Peptidoglycan fragment release from Neisseria meningitidis.
نویسندگان
چکیده
Neisseria meningitidis (meningococcus) is a symbiont of the human nasopharynx. On occasion, meningococci disseminate from the nasopharynx to cause invasive disease. Previous work showed that purified meningococcal peptidoglycan (PG) stimulates human Nod1, which leads to activation of NF-κB and production of inflammatory cytokines. No studies have determined if meningococci release PG or activate Nod1 during infection. The closely related pathogen Neisseria gonorrhoeae releases PG fragments during normal growth. These fragments induce inflammatory cytokine production and ciliated cell death in human fallopian tubes. We determined that meningococci also release PG fragments during growth, including fragments known to induce inflammation. We found that N. meningitidis recycles PG fragments via the selective permease AmpG and that meningococcal PG recycling is more efficient than gonococcal PG recycling. Comparison of PG fragment release from N. meningitidis and N. gonorrhoeae showed that meningococci release less of the proinflammatory PG monomers than gonococci and degrade PG to smaller fragments. The decreased release of PG monomers by N. meningitidis relative to N. gonorrhoeae is partly due to ampG, since replacement of gonococcal ampG with the meningococcal allele reduced PG monomer release. Released PG fragments in meningococcal supernatants induced significantly less Nod1-dependent NF-κB activity than released fragments in gonococcal supernatants and tended to induce less interleukin-8 (IL-8) secretion in primary human fallopian tube explants. These results support a model in which efficient PG recycling and extensive degradation of PG fragments lessen inflammatory responses and may be advantageous for maintaining meningococcal carriage in the nasopharynx.
منابع مشابه
Neisseria gonorrhoeae Crippled Its Peptidoglycan Fragment Permease To Facilitate Toxic Peptidoglycan Monomer Release.
Neisseria gonorrhoeae (gonococci) and Neisseria meningitidis (meningococci) are human pathogens that cause gonorrhea and meningococcal meningitis, respectively. Both N. gonorrhoeae and N. meningitidis release a number of small peptidoglycan (PG) fragments, including proinflammatory PG monomers, although N. meningitidis releases fewer PG monomers. The PG fragments released by N. gonorrhoeae and ...
متن کاملMutations in ampG or ampD affect peptidoglycan fragment release from Neisseria gonorrhoeae.
Neisseria gonorrhoeae releases peptidoglycan fragments during growth. The majority of the fragments released are peptidoglycan monomers, molecules known to increase pathogenesis through the induction of proinflammatory cytokines and responsible for the killing of ciliated epithelial cells. In other gram-negative bacteria such as Escherichia coli, these peptidoglycan fragments are efficiently de...
متن کاملMutations affecting peptidoglycan acetylation in Neisseria gonorrhoeae and Neisseria meningitidis.
Neisseria gonorrhoeae acetylates its cell wall peptidoglycan (PG) at the C-6 position on N-acetylmuramic acid. To understand the effects of PG acetylation on PG metabolism and release of PG fragments, we have made mutations in the genes responsible for PG acetylation. An insertion mutation in a putative PG acetylase gene (designated pacA) resulted in loss of PG acetylation as detected by a high...
متن کاملBioinformatics prediction and experimental validation of VH antibody fragment interacting with Neisseria meningitidis factor H binding protein
Objective(s): We previously conducted an in silico research on the interactions between the ribosome display-selected single chain variable fragment (scFv) and factor H binding protein (fHbp) of Neisseria meningitidis. We found that heavy chain variable (VH) fragment of this scFv had considerable affinity to fHbp. These results led us to evaluate the ability of this sm...
متن کاملDetailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis.
We used reverse-phase high pressure liquid chromatography (HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and post source decay analysis (MALDI-PSD) to determine the muropeptide composition of the human pathogen Neisseria meningitidis. Structural assignment was determined for 28 muropeptide species isolated after HPLC separation and purification. Fourteen of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 81 9 شماره
صفحات -
تاریخ انتشار 2013